

This article can be downloaded from http://www.ijerst.com/currentissue.php

 ISSN 2319-5991 www.ijerst.com

Vol. 8, Issuse.1,Jan 2020

Industrial Internet of Things Environments: Assessing a Semantic

Thing-to-Service Matching Method

L.M.L. NARAYANA REDDY, CHAKKA REDDY USHA

Abstract—

Platforms for the Industrial Internet of Things make it possible to make better decisions based on the data at hand, which in turn boosts

efficiency in manufacturing and other commercial proprietary, and coupled with particular IoT gear, data interchange and provisioning

between the data sources and platform services continue to be an issue. As a result, we propose and describe in depth an open-source

software-based solution called Thing to Service Matching (TSMatch), which enables semantic matching at a fine-grained level between

accessible IoT data and services. The report also includes an assessment of the proposed solution's performance in a testbed setting and

details its deployment in two distinct Aerospace production scenarios.

Key words

Iot data sources, semantic matching, use cases, and the Iot application are some of the terms that may be found in

an index.

INTRODUCTION

The ability to use data available in industrial settings

to enhance production and business operations is

only one of the many advantages offered by

Industrial Internet of Things (IoT) systems.

Although data collection has improved, it is still

difficult to analyse and use the information gained.

In order to function properly, IoT systems need

densely populated IoT infrastructures filled with

sensors and actuators. Because IoT platforms are

often vendor-specific, proprietary, and tied to certain

pieces of IoT hardware or cyber-physical systems,

putting them up and ensuring they receive proper

maintenance may be a challenging task. Carrying the

data to the Cloud may be time consuming, error

prone, and/or expensive [1] due to the necessity for

extra, specialised human intervention. Due to the

vendor-based approach, the current IoT ecosystem is

fragmented, making interoperability a crucial issue

to address, whether from a communication or an

application standpoint.

This study is concerned with the second problem and

hopes to develop a solution that will facilitate the

automatic flow of data between IoT Things (data

sources) and the services offered by an IoT platform.

To address this problem, we have developed a piece

of open-source software called Thing to Service

Matching (TSMatch). TSMatch is able to execute

semantic matching between services and acquired

IoT data at a fine granularity. To that end, TSMatch

automates the matching and provisioning process to

reduce the complexity of connecting preexisting IoT

networks to third-party services. The contributions

of this work are I a description of the open-source

TSMatch1 engine,

(ii) proof that deploying TSMatch in manufacturing

scenarios with realistic operating circumstances is

possible, and (iii) an evaluation of TSMatch in a

simulated IIoT setting (testbed). The paper will

proceed as described below. Following this

introductory portion, the associated work is detailed

in section II, and the major software components of

TSMatch are introduced in section III. Section IV

gives a thorough breakdown of the actual

implementation. Additionally, section V of the

article shows that the system may be easily

integrated with other IoT systems as EFPF2. The

additional processing time and time to completion

components of TSMatch are then assessed in an

experimental setting. In section VI, we give the

findings and talk about them. Section VII provides a

summary and directions for moving forward

.

Assistant professor1,2

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

P.B.R.VISVODAYA INSTITUTE OF TECHNOLOGY & SCIENCE

S.P.S.R NELLORE DIST, A.P , INDIA , KAVALI-524201

http://www.ijerst.com/currentissue.php
http://www.ijerst.com/

This article can be downloaded from http://www.ijerst.com/currentissue.php

WORK IN RELATION

There are a variety of methods used in service

matching, from the logical [2] to the non-logical [3]

semantic based techniques or a hybrid (combining

logical and non-logical techniques) approach [4].

For instance, in order to realise a global semantic

interoperability solution, Kovacs et al. present the

technological approach and the system architecture,

which involves merging the FIWARE NGSI and the

oneM2M context interfaces. Although this is a

potential technique, it is only discussed in theory and

not tested in any real-world or experimental settings

[5]. Even more, Cassar et al. provide a matching

system that incorporates both a semantic and

probabilistic matchmaking. The accuracy and

Normalized Discounted Cumulative Gain of the

suggested method were computed taking into

account a dataset of 1007 Web service descriptions

in OWL-S. The notion has been validated using

simulations, however the suggested strategy shows

better performance than previous approaches [6].

We have introduced the approach and the TSMatch

idea in past work. Our previous work laid the

groundwork for our present effort, which focuses on

validating TSMatch in real-world settings once it

has been specified and implemented [7].

ARCHITECTURE THAT IS

APPROPRIATE FOR THE PRODUCT

OR SERVICE BEING PROVIDED

TSMatch is a software platform for semantic

matching of Internet of Things (IoT) data to

services. TSMatch's primary objective is to

automatically deliver data between IoT data sources

and services, while meeting the requirements of the

services. Presently, TSMatch employs a matching

strategy based on semantic similarity to accomplish

this goal. The main players in TSMatch are shown

on Figure 1. Meaningful representations of the many

sensors that make up the Internet of Things are

shown here. At now, TSMatch's Engine is a server-

based component that may be hosted anywhere from

the network's edge to an IoT gateway or even in the

cloud. The Thing registry is analogous to a database

where details on Things are saved on a regular basis.

The TSMatch Client is the programme that the end

user downloads and instals on their device, such as

an Android phone. The user is synonymous with the

recipient of an Internet of Things service, which

might be a person, a business, or even a piece of

software.

Fig. 1. Sequence diagram of the various actors involved in

TSMatch.

As seen in Figure 1, the first step involves the IoT

Things broadcasting their descriptions when

activated. TSMatch Engine is able to register things

in the Things registry and subscribe to events that

occur inside them. This is not an internal part of the

TSMatch semantic matching engine, but rather is

provided by Coaty3 in this instance. The TSMatch

Engine may also approach a third party, such a

broker, for descriptions of IoT devices. That is to

say, it may be set up in the role of a subscriber if

necessary. The TSMatch client receives a service

request from a user and transmits it to the TSMatch

Engine in a separate process. This may be used, for

example, to take a temperature reading in a

particular room. TSMatch uses similarity matching

to determine which IoT Things in the registry best

fit the request and the available descriptions in order

to provide an appropriate response to the service

request. In the event of a successful match, the data

gleaned is sent to the TSMatch Client.

The TSMATCH Implementation

Considerations

In this section, we'll go through how TSMatch's

various parts and interfaces are currently being

implemented. All of TSMatch's parts are now

dockerized4 since it is built on a micro-service

design. The TSMatch engine in this implementation

is hosted on an Internet of Things (IoT) gateway,

while the client is built for Android. Wi-Fi is used

for all of the interaction between the TSMatch

components and the rest of the IoT architecture.

After that, we'll go through each individual part.

Devices Connected to the Internet of

Things

The OGC Sensor Thing API [8] has been used to

model the IoT Things. Information on the sensors,

including their attributes and whereabouts, is

included in the description of the Thing. Coaty, an

application-layer communication platform, is used

to spread the word. Coaty allows Internet of Things

devices to broadcast their semantic descriptions via

http://www.ijerst.com/currentissue.php

This article can be downloaded from http://www.ijerst.com/currentissue.php

multicast, and it alerts subscribers when the device

goes offline by broadcasting a "deadvertized" event.

In order to find out what's out there, the TSMatch

Engine sends out a "discover" event and receives a

response with the thing's description. Semantic

representations of cyber physical systems using

heterogeneous hardware, such as a sensor, a single-

board computer (SBC), or a programmable logic

controller (PLC) coupled with sensors via its

Input/output interface, relate to IoT Things. The

sensor driver and a Coati agent are the software

components that make up the IoT cyber-physical

system and are responsible for handling tasks like

publishing information about an IoT Thing.

TSMatch System

Semantic matching between IoT Thing descriptions

and service descriptions is implemented on the

server side via the TSMatch engine. Requests for

services are processed by the engine after being sent

by the TSMatch Client. It also manages the

matching process between the characteristics and

attributes of Things descriptions and the semantic

description of services based on queries sent to the

TSMatch Thing registry. A Sorensen-dice

coefficient and a word frequency-inverse document

frequency are used to determine how similar two

documents are semantically. Once a matched set has

been determined, the accessible Things inside it are

gathered together and an aggregated object

representing this new set is again persisted in the

database. The TSMatch Client receives the matching

result and displays it to the user regardless of

whether a match was found. If a match is detected,

the engine will launch an event that subscribes to

data from the chosen sensors and determines an

average value for that data set based on the chosen

location. The TSMatch Client is then updated with

the new information. In the event that a request is

removed, TSMatch will discontinue subscribing the

TSMatch client to get updates on the IoT Things

observations from the broker. Node.js JavaScript

and the Typescript programming language5 have

been used to create the TSMatch Engine. We have

used the string-similarity and natural packages from

the Nebulous Plasma Muffin (npm) to implement

Srensendice similarity.

Consumer of TSMatch

The TSMatch Client takes care of the service's

semantic description, either by constructing one in

response to a user's request (such as "monitor

temperature") or by retrieving one from a distant

location. With the help of the React Native

JavaScript framework8, we have created a mobile

application called the TSMatch Client. In its present

state, the client only supports Android 4.1 and later.

TSMatch subscribes to a MQTT broker during

launch. Users may browse a catalogue of available

Things along with detailed descriptions, articulate

their needs, and watch as their data is updated in real

time.

Information Management, Search, and

Sharing Concerning Things

Coati v2.0 allows IoT Things to register, declare

themselves, be discovered, and communicate with

the end user (the subscriber). An MQTT broker built

on top of Mosquito v2.0.11 facilitates the

conversation. The IoT descriptions are kept in a

database that uses the JSONB data type for binary

storage and retrieval of JSON objects. This database

is built on PostgreSQL 13.2. Docker images9 built

from the official PostgreSQL source code have been

utilised.

Using TSMatch on EFPF Applications

Industry 4.0, the Internet of Things (IoT), artificial

intelligence (AI), big data, and digital manufacturing

are all represented in the European Connected

Factory Platform for Agile Manufacturing (EFPF)

ecosystem. The foundation of EFPF is an open,

standardised "Data Spine" that allows for the

seamless integration of various systems, platforms,

tools, and services. The various EFPF parts are

supplied by different companies and coordinate their

efforts through the system-wide Data Spine. As a

result, the EFPF ecosystem is built in a SOA fashion.

The EFPF is comprised of the Data Spine, the EFPF

Web-based platform (which provides unified access

to various tools and services through a Web-based

portal), the base digital platforms (four base

platforms funded by the European Commission's

Horizon 2020 programme), and the external

platforms (platforms connected to the EFPF

ecosystem that addresses the specific needs of

connected smart factories). Currently, TSMatch is

one of EFPF's integrated components. Together with

the EFPF partner Nextworks10's IoT automation

platform Symphony Factory Edition (one of the

External Platforms within the EFPF federation), its

integration has been tested in production scenarios.

Symphony is an end-to-end IoT platform with a

flexible design that allows it to work with a broad

variety of IoT sensors and actuators, among other

types of heterogeneous hardware. Using the EFPF

Data Spine, the IoT Symphony platform has been

integrated with TSMatch for provisioning and data

exchange with the production environments'

available IoT data. With input from Walter Otto

Muller & Co. KG11 (WOM) and Innovint Aircraft

Interior GmbH12, EFPF has integrated and

deployed TSMatch in three aerospace

manufacturing use-cases (IAI). The applications

include: 1) maintaining a constant temperature and

humidity in a factory to meet component tolerances

(WOM); 2) monitoring raw materials in a freezer to

prevent waste from excessive heat (IAI); and 3)

http://www.ijerst.com/currentissue.php

This article can be downloaded from http://www.ijerst.com/currentissue.php

keeping tabs on a vacuum former from afar to take

corrective action as soon as pressure values deviate

from acceptable ranges (IAI).

 All three scenarios have aimed to protect the

consistency and high quality of manufacturing

operations by keeping tabs on critical process

variables and sounding alerts if certain limits are

breached. By using IoT Things, we are able to

collect data on the relevant environmental

characteristics, which are then sent to the external

platform Symphony by means of TSMatch. As can

be seen in Figure 2, the Symphony Factory

Connector13 makes use of the TSMatch Client to

make service requests for IoT Things. TS Match's

data is consumed by a Cloud instance of the

Symphony IoT automation platform via the EFPF

Data Spine, which provides services with

interoperable security capabilities. The Symphony

HAL (a software module that primarily abstracts the

low-level details of various heterogeneous fieldbus

technologies and provides a common interface to its

users), Symphony Data Storage, and Symphony

Visualization provide the visual monitoring, sensor

data and event storage, signal analysis, and alarm

systems for the Things. Actions, such as control

actions on field-level devices, notifications (emails,

SMS), and alarms, are determined by the Symphony

Event Reactor after merging data from various

sources and data brokers (e.g., TSMatch) (via stack

light which provides visual and audible indications).

In the Cloud deployment of the platform, the real-

time data and the current state of the thresholds and

alerts may be seen and managed using the

Symphony GUI.

Fig. 2. EFPF interconnected components on the

manufacturing use-cases.

 As illustrated in Figure 3, a successful deployment

has been done on production sites. The EFPF

components, including TSMatch, have therefore

been validated based on the defined requirements,

usability aspects, as well as ease of

installation/configuration. After 6 months of

deployment, traceability and detection of

abnormalities has been also achieved, which

increased the reliability of the manufacturing

process, reduced delivery delays, and minimized

rejects/waste occurrences. Fig. 3. Installation of the

use-cases.

 PERFORMANCE EVALUATION

AND RESULTS

TSMatch Testbed

Fig. 3. The TSMatch demonstrator at the forties IIoT Lab.

We have established a TSMatch testbed on the

forties IIoT Lab14 based on the operational

requirements generated from the TSMatch

integration on real-world industrial use-cases, as

shown in Fig. 4. As shown in Figure 3, the testbed

consists of the following parts:

Two real Internet of Things (IoT) devices and ten

simulated IoT devices are available, with the former

sporting a total of five sensors (for measuring things

like temperature, humidity, sound, air quality, and

particles in the air). According to section IV, each

virtual IoT thing is linked to a virtual IoT sensor,

each of which is housed in its own Docker container.

• TSMatch Engine, Message Broker, and Database:

TS Match Engine is containerized, and the Mosquito

message bus and PostgreSQL database are also

deployed as containers in the forties IoT gateway.

Using a MQTT client15, the IoT service request

simulator may mimic third-party IoT services.

TSMatch Client was abandoned in favour of the

service request, which allowed for precise regulation

of the inter-request time gap.

http://www.ijerst.com/currentissue.php

This article can be downloaded from http://www.ijerst.com/currentissue.php

Fig. 4. TSMatch components and experimental

interconnections.

The hardware specifications for each of the devices

that is part of the demonstrator are given in Table I.

conclusion

TSMatch is a new approach described in this study

for semantically matching IoT data sources and

service descriptions. We outline the TSMatch

software architecture and discuss its practical

applications in the industrial.

TABLE I MEAN PT AND TTC OF

SEQUENTIAL AND SIMULTANEOUS

SCENARIOS.

contexts of the European EFPF project settings. The

report also includes a first performance assessment

of TSMatch and details the existing open-source

TSMatch implementation's processing time and time

to completion of requests. In order to identify the

"most" appropriate collection of IoT Things whose

aggregated data may satisfy a certain semantic

request, future work will concentrate on enhancing

the semantic matching engine by including a more

intelligent parsing and also learning.

REFERENCES

[1] A. Verma, and S. Kaushal,” Cloud computing security issues

and challenges: a survey,” In International Conference on

Advances in Computing and Communications Springer, Berlin,

pp. 445-454, July. 2011.

 [2] A. Segev and E. Toch, ”Context-Based Matching and

Ranking of Web Services for Composition,” in IEEE

Transactions on Services Computing, vol. 2, no. 3, pp. 210-222,

July-Sept. 2009.

 [3] H. Fethallah, A. Chikh , and A. Belabed. ”Automated

discovery of web services: an interface matching approach

based on similarity measure.” In Proceedings of the 1st

International Conference on Intelligent Semantic Web-Services

and Applications, pp. 1-4, 2010.

 [4] M. Klusch and K. Patrick, ”isem: Approximated reasoning

for adaptive hybrid selection of semantic services,” In Extended

Semantic Web Conference, Springer, Berlin, Heidelberg pp. 30-

44, 2010 .

 [5] E. Kovacs, M. Bauer, J. Kim, J. Yun, F. Le Gall and M.

Zhao, ”Standards-Based Worldwide Semantic Interoperability

for IoT,” in IEEE Communications Magazine, vol. 54, no. 12,

pp. 40-46, December 2016.

[6] G. Cassar, P. Barnaghi, W. Wang and K. Moessner, ”A

Hybrid Semantic Matchmaker for IoT Services,” 2012 IEEE

International Conference on Green Computing and

Communications, pp. 210-216, 2012.

[7] N. Bnouhanna, R. C. Sofia, and A. Pretschner,, ”IoT Thing

To Service Semantic Matching,” 2021 IEEE International

Conference on Pervasive Computing and Communications

Workshops and other Affiliated Events (PerCom Workshops),

pp. 418-419, March 2021.

 [8] S. Liang, C.Y. Huang, and T. Khalafbeigi. ”OGC

SensorThings API Part 1: Sensing, Version 1.0.”, 2016.

[9] I. Martens, D9.1 - Implementation and Validation through

Pilot-1. [Deliverable] https://www.efpf.org/deliverables, 2021.

 [10] I. Martens, D9.2 - Implementation and Validation through

Pilot-2. [Deliverable] https://www.efpf.org/deliverables, 2021.

[11] I. Martens, D9.3 - Implementation and Validation through

Pilot-3. [Deliverable] https://www.efpf.org/deliverables, 2021.

http://www.ijerst.com/currentissue.php

