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Abstract: Structural Equation Modelling (SEM) is used to examine the relationships between the 

constructs. Partial Least Square nonlinear Path Modeling is another name for it (PLS- PM). PLS-PM 

uses a partial least squares algorithm to estimate factor scores and path coefficients. Two linear and 

two non-linear constructs are used to examine the Ejection Fraction and Survival of cardiovascular 

disease data in this research. In order to study the interrelationships between the various 

constructions, an inner model and an exterior model must be created. PLS-SEM is used to estimate 

the parameters of the provided models in R version 3.5.1. 

Key Words: Structural equation modeling using partial least squares Modeling the inside out, a 
model of the outside world, Ejection Fraction, Nonlinear Effect, and Linear Effect The R language. 
 
1.INTRODUCTION 
 
Testing the link between the constructs is 
done by using the PLS Structural Equation 
Modelling (PLS SEM). Both a simple model 
and a complicated model are possible. Partial 
least squares for principal component analysis 
was explained by Wold (1975a) in a seminar 
paper. In 1982 and 1985, Wold detailed the 
phases of the algorithm for PLS-PM. Authors 
Chin (1998) and Tenenhaus et al. (2005) have 
presented further developments on the PLS 
method to Structural Equation Models 
following Wold's original proposal. An 
iterative approach that solves the blocks of 
each model separately is employed. A 
regression model's latent and manifest 
variables can both be explained by PLS-PM, 
which claims to do so at its best in terms of 
residual variance (Fornell and Bookstein 
measurement. Empirical confidence intervals 

and hypothesis testing procedures using 
resampling methods (Chin 1998; Tenenhaus 
et al. 2005) such as Jackknife and bootstrap 
are used in place of the classical parametric 
inferential framework in PLS-PM. As a result, 
the estimates have less ambitious statistical 
features, such as recognized bias in 
coefficients but broad consistency (Cassel et 
al. 1999, 2000). 
Section 2 of this study discusses data 
characteristics, while Section 3 of the 
document discusses the pls-sem model 
formulation. Section 4 explains the technique 
for the partial least square algorithm. 
Measurement and structural models' quality 
indices are shown below. Section 6 provides 
the findings of the PLS-PM application to the 
cardiovascular disease data.  
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2. DATACHARACTERISTIC 
In Chennai City, a patient with Cardio Vascular 
Disease is being studied. A total of 405 
samples are gathered from private hospitals 
in Chennai for this study. In the clinical 
laboratory, information on 13 different 
patient factors was collected, including the 
patient's name, gender, age, BMI, where they 
live (urban or rural), smoking and drinking 
habits, and family history. The patients' BGL, 
BCL, BP, and EF, as well as their survival 
status, were all measured during the study.. 
3. ThePLS-SEMModelSpecification 
Based on partial least square approach, we 
have considered two measurement models 

namely linear 
latentmeasurementmodelandnonlinearlatent
measurementmodelwhichareexhibitedinDiagr
am1. 
3.1 StructuralModel 
Blood factor and lifestyle 1 2 factor are two 
latent exogenous variables in the linear 
structural equation model, as well as latent 
quadratic and latent endogenous variables. 
3.2 1, 2, 3, 1, 4, and 5 
3.3 and .. Three manifest variables, 
namely blood glucose (x1), blood pressure, 
and heart rate, are used to calculate the blood 
factor (). 
3.4 6 1 
3.5 Blood pressure and cholesterol are 
two of the three. Three obvious elements 

serve as indicators of one's way of life, called 
the lifestyle factor (). 
3.6 (x4), (x5), and (x6) have a history of 
smoking, drinking, or both. linear influence of 
and on the route coefficients 
3.7 1 2 3 4 5 6 
3.8 It is the quadratic effect of the latent 
effect of that is the notation for this 
interaction effect, which is referred to by the 
notation. 
3.9 2 13 3 14 4 
3.10 is a variable that is internal to the 
organism. is a measure of the impact of on . 
There are no non-linear effects on the 
parameters ,. 

3.11 5 56 5 6 
3.12 a number between twenty-one and 
twenty-two 
 
3.13 quadratic effect of quadratic effect of 
quadratic influence of quadratic effect of 
quadratic effect 
 
3.14 1 2 23 3 24 4 
 
3.15 unobserved, unmeasured, or 
unobserved factor 
 
3.16 Two linear terms, one interaction 
term, one quadratic term, and two 
endogenous constructs are used in a 
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nonlinear PLS-SEM technique. Based on these, 
we've created a graphic representation of the 
model, as shown in Diagram 1.Diagram1 
APartialLeastSquareNonlinearstructuralequati
onmodelconsistslatentlinearcriterion∗and∗,
alatent 
1 2 
interactionterm∗andalatentquadraticterm∗
andlatentendogenousvariables∗and∗ 
3 4 5 6 
  
 
Partial least square structural equation 
modeling allows for the estimation of the 
ejection % by observing the interaction and 
quadratic effects. The structural or inner 
model and the measurement or outer model 
make up the PLS Path Model. It is the 
structural model that deals with how the 
latent variables are linked together. The 
association between the latent variables and 
the block of manifest variables is constructed 
in the measurement model. 

 
For this example, let us assume that there are 
'p' variables that are measured on 'n' 
observations, and the variables are separated 
into 'q' blocks. This is the dataset, which has N 
observations and P variables, so we'll call it 
"X." X is a matrix of dimensions nxp. Each 
block of the dataset X can be broken down 
into the q blocks listed above in an order of 
mutual exclusion. A total of three variables 
are present in each of the blocks listed above, 
however only one variable is present in each 
of blocks X5 and X6. Unobserved variables are 
associated with each block Xpq (where Xpq is 
the pth variable in the qth block; q=1,2,3,..., 
Q,). Diagram 1 depicts the theoretical model's 
structural relationship, and the adjacency 
matrix D is generated from this. Latent 
variable is the one whose entry dij equals 1. 
 
antecedent to the latent variable. Table 1a 
displays the resulting matrices for the model 
as supplied, as seen below. 

Table1 
 ∗ 

1 

∗ 

2 

∗ 

3 

∗ 

4 

∗ 

5 

∗ 

6 

∗ 

1 

1 0 0 0 1 1 

∗ 

2 

0 1 0 0 1 1 

∗ 

3 

0 0 1 0 1 1 

∗ 

4 

0 0 0 1 1 1 

∗ 

5 

0 0 0 0 0 1 

∗ 

6 

0 0 0 0 0 0 

 
 
Thestructuralequationmodellingforthespecifie
dmodelisconstructedinthefollowingequation. 
𝑌=𝑌𝐵+ð, 
where Y is the matrix of latent exogenous and 
endogenous variables, B is the coefficient 
matrix and the error ðisassumedto 
becentred,that is𝐸(ð)=0and𝑉(ð)=1. 
 
3.17 Themeasurementmodel 

Latent constructs and their manifest variables 
form an outer model or measurement. All of 
the manifest variables that are linked to a 
single latent variable are grouped together as 
a block in the outer model, which is composed 
of reflective a blocks. Reflective models 
believe latent constructs to be the root of 
manifest variables. Latent constructs are not 
included in the model. There are two parts to 
this equation: the loading and the 
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measurement error. The loading represents 
the amount of data that is being loaded into 
the manifest variable at the start of the 
measurement, and the measurement error 
represents how much data is actually being 
loaded into that variable at the end of the 
measurement. As correlations between each 
manifest and its related latent variable are 
represented by standardized loadings, they 
are generally favored for interpretation 
purposes. According to this model's 
assumptions, the latent variable of the qth 
block has zero mean and is not linked with 
error pq. The following equation expresses 
the linear relationships in a standard 
regression perspective.(𝑥𝑝𝑞/∗)=𝑝0+𝑝𝑞∗ . 
𝑞 𝑞 
Thisassumption,definedaspredictorspecificati
on,assuresdesirableestimationpropertiesinclas
sicalOrdinaryLeastSquaresmodelling. 
 3.17.1 Reflectivemeasurement 
Inthismeasurement,eachblockofmanifestvaria
blesreflectsit’slatentvariableandcanbewritten
asthemultivariateregression Xq=∗w𝑇+𝗌 
 *│∗]=0. 
  
𝑞   𝑞 𝑞, 
So,w𝑇canbeestimatedbyleastsquaresas 
  
𝑞 𝑞 
  
w^𝑇=(∗𝑇∗)−1∗𝑇X 
  
𝑞 𝑞 𝑞 
  
𝑞 q 

  
−1 
=∗𝑇𝑉(∗ 𝐶o(∗,X) 
𝑞 𝑞) 𝑞 q 
=𝐶o(∗,Xq) 
=𝐶o(∗,Xq). 
The partial least square algorithm estimates 
all the latent variables ∗, q=1,2,3,…,Q,as a 
linear combination 
oftheirmanifestvariablesundertheconstraintto
haveunitvariance.Weassumedallthemanifestv
ariablestobescaledtozeromeanandunitvarianc
e. 
 
3.17.2 Weightmatrix 
Whenallthelatentvariablesinthemodelaremea
suredreflectively,itiscalledareflectivemodel.Le
t𝑝𝑞= 
{𝑝∈{1,2,3,…,𝑃}|𝑥𝑝~∗}beasetofindicesformani
festvariablesrelatedtolatentvariable∗sothatw
𝑞,𝑞= 
𝑞 𝑞 
1,2,3,…,𝑄isacolumnvectoroflength|𝑝𝑞|.Theou
terweightsmatrixWcanbewrittenasfollows 
 
 
W=⎜0 0 w3 … 0⎟. 
: : : … 0 
𝗁0 0 0 0 w𝑞⎠ 
Table2representstheadjacencymatrixMforthe
measurementmodel.Ithasthesamestructureas
thematrixofouterweightsWasitisusedfortheini
tialization.Iftheentry𝑝𝑞=1thenmanifestvariab
le𝑝isoneoftheindicatorsofthelatentvariable
∗. 

Table2 
 ∗ 

1 

∗ 

2 

∗ 

3 

∗ 

4 

∗ 

5 

∗ 

6 

𝑥11 1 0 0 0 0 0 

𝑥21 1 0 0 0 0 0 

𝑥31 1 0 0 0 0 0 

𝑥42 0 1 0 0 0 0 

𝑥52 0 1 0 0 0 0 

𝑥62 0 1 0 0 0 0 

𝑥73 0 0 1 0 0 0 

𝑥83 0 0 1 0 0 0 

𝑥93 0 0 1 0 0 0 
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𝑥104 0 0 0 1 0 0 

𝑥114 0 0 0 1 0 0 

𝑥124 0 0 0 1 0 0 

𝑥135 0 0 0 0 1 0 

𝑥146 0 0 0 0 0 1 

 
 
3.17.3
 BlockHomogeneityandunidimensional
ity 
There must be a single latent variable 
represented by the manifest variables in a 
one-dimensional space. Block homogeneity 
and unidimensionality can be used to identify 
a one-dimensional space. Cronbach's alpha, 
Dillion-Goldstein, and Principal component 
analysis of a block are used to test the 
homogeneity and unidimensionality of a 
block. 
4. Thepartialleastsquarealgorithm 
 
Woldin and Lohmoller invented this method 
in 1982 and refined it in 1989. Listed below 
are the five steps. 
Stage1. 
The weighted sum of manifest variables is 
used to generate each latent variable in this 
stage. In this case, let us assume that all of the 
manifest variables are scaled so that the mean 
ofxpq is zero and the variance ofxpq is one. In 
the initialization of weights, all of the weights 
are assigned a value of 1. Despite the fact that 
the latent variables are all centred, they must 
still be scaled so that they all have the same 
variance^=X𝑀 
⌃∗ 
⌃∗  = g ,whereq=1,2,3,..,Q. 
𝑞 √𝑣𝑎𝑟i(⌃∗) 
Thelatentvariablesareinitialized,sothatweget
^=(∗̂,…,∗̂). 
1 Q 
Stage 2.The inner approximation is made in 
this stage which does to estimate each latent 
variable as a weightedsum of its neighbouring 
latent variables.Again we are scaling the 
recomputed latent variables to have 
unitvariance. 
˜= 𝐵, 
  

whereBisthematrixof 
innerweights,therefore∗̃ 
estimation^=(˜∗,…,∗̃). 
  
∗̃ 
= g
 ,whereq=1,2,3,..,Q.Weobtaintheinner 
√𝑣𝑎𝑟i(∗̃) 
  
1 Q 
Stage3. Outside approximation is completed 
at this point. As a result of Stage 2, the 
weights are computed from the inner 
approximation for the initialization. 
Measurement models (reflective models) of 
the latent variables are used to estimate the 
weights. A coefficient of multivariate 
regression in which the block of manifest 
variables is treated as the response variable 
and the latent variable as an aregressor. 
Here's how it's explained: 
  
w^𝑇=(∗̃𝑇˜∗ 
  
−1 
  X=𝑐o𝑟(𝑞,X𝑞). 
  
Stage4.The blocksX1,X2,X3,…,XQarearranged 
inmatrixX,andthe outer weights 
vectorsw1,w2,w3,….,wQarearranged as outer 
weights matrix W. These matricesare used to 
estimate the factors scores by means of 
themanifestvariables 
  
⌃ 
^=XWand⌃= g  
  
  
,where^=(^∗,∗̂,…,∗̂). 
  
𝑞 √𝑣𝑎𝑟(⌃) 
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1 2 Q 
  
Stage5.Iftherelativechangeofalltheouterweigh
tsfromoneiterationtothenextissmallerthenapr
edefinedtolerance 
  
w^𝑝𝑞(o𝑙𝑑) − w^𝑝𝑞(𝑛ew) 
| 
w^𝑝𝑞(𝑛ew) 
  
|<𝑡o𝑙e𝑟𝑎𝑘𝑐e 
  
forall𝑘=1,2,3,…,𝐾𝑎𝑘𝑑𝑞=1,2,3,…,𝑄.Theconverg
enceisattainedatthethresholdvalueortoleranc
evalue1.10−5.The weighting scheme: Centroid 
weighting scheme, Factorial weighting 
scheme, and Path weighting scheme are all 
examples of partial least square algorithm 
weighting schemes. Wold proposed the 
Centroid approach in 1982, and later 
Lohmoller introduced Factorial and Path 
weighting schemes in 1989, respectively. 
Adjacency matrix D for latent variables is 
shown in Table 1, where D represents 
directionality. There is an arc from nodei that 
moves toward the arc's head, which is node j, 
for any dij = 1. Inner weights are calculated 
using the adjacency matrix D. As a matrix 
product of the outer estimate and the matrix 
of inner weights E, the inner estimate () is 
expressed.˜=𝐸 
Furthermore,letusdenote𝑅=𝑐o𝑟(^),theempiri
calcorrelationmatrixforthelatentvariablesresul
tingfrom 
theouterestimationand𝐶=𝐷+𝐷𝑇asymmetrical
matrix. 
 
Centroidweightingscheme:Followingthecentro
idweightingscheme,thematrixof innerweights 
Etakestheform 
  
eij 
  
={𝑠i𝑔𝑘(𝑟ij), fo𝑟𝑐ij=1}, i,j=1,2,3,…,𝑄. 
0 , o𝑡ℎe𝑟wi𝑠e 
  
 
Factorialweightingscheme:Thefactorialweighti
ngscheme 
={, =1},,=1,2,3,…,. 

0 , ℎ 
This scheme is similar to the centroid 
weighting scheme but, there is no sign of the 
correlation between twoneighbouring latent 
variables. This might be quite reasonable 
when there are pairs of neighbouring 
latentvariableswithcorrelationsnearingtozero. 
 
Pathweighting scheme:InIn this model, the 
latent variable's predecessors and successors 
play a different role in the relationship. The 
set of arrow tails leading from the successor is 
defined as a node. In the same way, the set of 
arrows going to a node's predecessor is its 
predecessor set. A head is the arch's first 
node, while a tail is its last. To determine the 
association between one specific latent 
variable and its successor, it is used in a 
multiple regression. 
∗=∗𝑝𝛾+, [𝑧]=0, i=1,2,3,…,𝑄, 
i i i i 
with∗(𝑝𝑟e𝑑)thepredecessorsetofthelatentva
riable∗.Letbe∗𝑠thesuccessorsetofthelatentv
ariable∗ 
  
i 
theelementoftheinnerweightmatrix𝐸are 
𝛾 
  
i i 𝑞 
 
 
,fo𝑟jC∗𝑝 
  
⎧j i 
e =⎪𝑐o(∗,∗) , fo𝑟jC∗𝑠 
ij i j i 
⎨0 ,o𝑡ℎe𝑟wi𝑠e. 
𝗅 
Estimationofparameters:Oncethefactorscores
areestimatedbythepartialleastsquarealgorith
m,thepathcoefficientstobe estimatedby 
usingthe ordinaryleastsquare method 
accordingto the structuralmodel.For 
  
eachlatentvariable⌃∗ 
  
,wℎe𝑟e𝑞=1,2,3,…,𝑄,thepathcoefficientisthere
gressioncoefficientonits 
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predecessorset∗𝑝 
  
 
^ ⌃∗𝑝𝑇⌃∗ 
  
 
−1⌃∗𝑝𝑇⌃∗ 
  
𝛽𝑞=(𝑞 
  
𝑞 ) 
  
 
𝑞 𝑞 
  
Weobtaintheelements𝑏^ij,i,j=1,2,3,…,𝑄ofthee
stimated matrixofthepathcoefficients𝐵^, 
 
  
𝛽^ij={ 
  
𝛽^𝑞j 
  
, fo𝑟j∈ ∗𝑝 
  
0 ,  o𝑡ℎe𝑟wi𝑠e. 
Thematrix𝐵^beinterpretedasatransitionmatrix
for thestructuralmodel. 
 
5. TheQuality indices 
 
No global fit indicators exist in partial least 
square modeling, but it is important to 
validate the measurement, structural, and 
overall models separately. Fit indices such as 
the communality index, the redundancy index 
and the goodness of fit are all supported by 
PLS-SEM. 
Communality index: 
Foreachqthblockinthemodelwithmorethanone
manifestvariable,thequalityofthemeasuremen
tmodelisassessedbymeansofthecommunalityi
ndex 
𝑃g 
  
1 
𝑐o= ∑ 𝑐o𝑟𝑟2(𝑥 
  
  
,⌃∗),fo𝑟𝑎𝑙𝑙𝑞: 

  
>1. 
  
𝑞 𝑃𝑞 
  
 
𝑝=1 
  
𝑝𝑞 𝑞 𝑞 
  
Communalityindexexplainshowmuchofthema
nifestvariablesvariabilityintheqthblockbytheir
ownlatent 
variablescores⌃∗ 
.Thecommunalityintheqthblockisaverageof 
thesquaredcorrelationsbetweeneach 
manifestvariableandthecorrespondinglatentva
riablescores.Toassessthequalityofthewholeme
asurementmodelbymeansoftheaveragecomm
unalityindexisasfollows 
1 
𝑐̅̅o̅𝑚̅  =∑ 𝑃 ∑𝑃𝑞𝑐o𝑚. 
  
𝑞:𝑃g>1 
  
𝑞 𝑞:𝑃g>1 
  
Redundancy index: It is a measure of how 
much of a block's variability is explained by its 
latent variables, and it is calculated for each 
endogenous block using a redundancy index 
that is derived for the jth endogenous 
endogenous latent variable. According to this 
example:e𝑑j= 𝑐o𝑚j×𝑅2(∗̂,∗̂ ∗ ∗). 
𝑦 𝑞:g→j 
Also,theaverageredundancyforthestructuralm
odeliscomputedasfollows: 
𝐽 
𝑟 ̅e̅𝑑̅=1∑𝑟e  , 
  
𝐽 j 
j=1 
whereJisthetotalnumberofendogenouslatentv
ariablesinthemodel. 
 
Goodness of Fit index (GoF): The goodness of 
fit index was proposed by Tenenhaus et al in 
the year 2004.This index provides the model 
performance in the measurement model and 
structural model, thus provide 
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asinglemeasurefortheoverallpredictionperfor
manceofthemodel.Thegoodnessoffitindexiscal
culatedasthegeometricmeanoftheaveragecom
munalityindexandaveragecorrelationsquareva
lueanditisdenotedasfollows: 
𝐺o𝐹=√(̅𝑐̅o̅𝑚̅  ×𝑅̅̅2̅)  , 
wheretheaveragecorrelationsquarevalueisobt
ainedasfollows: 
  
̅𝑅̅2̅= 
  
1𝑅2(∗̂,∗̂ 
  
  
∗ ∗). 
  
𝐽 𝑦 𝑞:g→j 
  
Thereforethegoodnessoffitindexisdefinedasint
hefollowingequation 
 
  
𝑃g 
  
2 ⌃∗ 
  
∑𝐽 
  
𝑅2((∗̂,∗̂ ∗ ∗)) 
  
(∑𝑞:𝑃g>1 ∑𝑝=1𝑐o𝑟𝑟 
  
(𝑥𝑝𝑞,𝑞) 

  
j=1 
  
𝑦 𝑞:g→j 
  
𝐺o𝐹= 
  
∑ 𝑃 × 𝐽 . 
  
𝑞:𝑃g>1𝑞 
 
6.
 ApplicationofPLSNonlinearSEMforCar
dioVascularDisease 
 
Two linear latent constructs, one interaction 
construct, one latent quadratic construct, and 
one endogenous construct are all used in the 
theoretical model's construction. To estimate 
the parameters, the partial least squares 
nonlinear structural model is used, and the 
following sections show how to do so using R 
Language 3.5.1. 
Measurement model assessment: The 
unidimensionality, loadings, and 
communalities are examined in this section. 
When the linked indicators of a construct 
increase or decrease in the same direction, 
this is referred to as unidimensionality. The 
amount of variance explained by a latent 
variable is measured as the square of loading, 
which is referred to as 
communality.Unidimensionality 

Table3 

Constructs Cronbach’salpha Dillon-Goldstein’srho Eigenvalues 

∗ 

1 

0.841 0.7363 2.560 

∗ 

2 

0.790 0.785 2.392 

∗ 

3 

0.817 0.804 1.962 

∗ 

4 

0.972 0.799 3.081 

 
6.1 
According to the aforementioned Table 3, the 
Cronbach's alpha values for the following 
variables are as follows: 1 2 3 4 1 2 3 4 1 2 3 4 
1 2 3 4 1 2 3 4 These numbers are higher than 
the 0.7 threshold set by the standards. Dillion-

(DG) Goldstein's rho values are more than 0.7 
if the block is regarded unidimensional. The 
observed rho values are more than the 
threshold value 0.7. Indicators that have Eigen 
values greater than 1 are better at describing 
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the concept. More than one Eigen value was 
detected. The three indices, Croanbach alpha, 
Dillion-rho, Goldstein's and Eigen values, all 
meet the required norms for their respective 
categories. In other words, we might say that 
the indicators explain the construction of the 
model. 

6.2 LoadingsandCommunalities 
The loadings explain the correlationbetween a 
latent variable andits manifest 
variables,andthe 
communalitiesarethesquareofcorrelations.The
seloadingsandcommunalitiesarepresentedinth
efollowingTable4 

  
Table4 

Construct Manifestvariable Weight Loading Communality 

 

∗ 

1 

X1 0.8388 0.8857 0.7845 

X2 0.7289 0.7652 0.5855 

X3 0.7112 0.8546 0.7303 

 

∗ 

2 

X4 0.8373 0.6974 0.4864 

X5 0.8895 0.8938 0.7989 

X6 0.7078 0.7183 0.5160 

 

∗ 

3 

X7 0.7840 0.8737 0.7634 

X8 0.8457 0.7863 0.6183 

X9 0.7769 0.6806 0.4632 

 

∗ 

4 

X10 0.7626 0.7741 0.5992 

X11 0.7935 0.7222 0.5216 

X12 0.7321 0.8284 0.6862 

 Estimate Std.Error |t|value Pvalue Result 

∗→∗ 
1 5 

-0.627 0.0730 8.5890 0.000 Significant
***

 

∗→∗ 
2 5 

-0.503 0.0652 7.7147 0.000 Significant
***

 

∗→∗ 
3 5 

-0.685 0.0512 13.3789 0.000 Significant
***

 

∗→∗ -0.561 0.0505 11.1089 0.000 Significant
***
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Table 4 shows 
the estimated 
weights based 
on the pls-pm 

algorithm. 
Linear latent 
variable () has 

weights ranging from 0.7112 to 0.8388; 
another linear latent variable () has weights 
ranging from 0.7078 to 0.8895; and an 
interaction variable () has weights ranging 
from 0.7769 to 2 3 
Weights in the quadratic variable () range 
from 7112 to 8328, with an average of 0.8457. 
The manifest variables for its constructs are 
also given loading. The minimum loading is 
0.6806, and the highest loading is 0.8938, 
which greatly explains its structure. ' Table 4 

provides the 
communalities 

for all of the 
aforementione

d indicators. 
6.3 StructuralModelAssessment 
In this section, the determination of 
coefficients, the redundancy index and 
goodness of fit indices results arediscussed. 
The statistical package R language version 
3.5.1is used and the derived outputsare given 
in thefollowingTable5 
Table5 

 
 
significantat1%level 
Ejection Fraction() and () are endogenous 
latent constructs, and each construct's 
coefficient is significant at a 1% level toward 
each other. linear latent variables have p 
values smaller than 0.01 
which, even at a 1% level, is significant. The 
coefficient value of the latent variable () is 
found to have an impact on 
Positively the Ejection Fraction() endogenous 
latent variable.  
Endogenous latent variable () is adversely 
affected by latent variable () with a coefficient 
value of -0.503 and a p value of 1 percent. At 
a 1% significance level, the coefficients of 
interaction () and quadratic 5 3 effects () are 
significant. These factors have a detrimental 
impact on the Ejection Fraction(). Latent 
variables out of four: 
 
4 5interaction effect has a greater impact on 
the endogenous variable than the single 
factor does. The quadratic equations 
Second in line is first linear latent; third is 
effect; and fourth is second linear latent. 
These latent exogenous variables have p 

values less than 0.01 which are significant at 
one percent significance. 
 
1 2 3 4 5 
The percentage point. Using these exogenous 
factors, it can be deduced that a latent 
endogenous variable is being affected. The 
next in line is the latent interaction construct, 
which exerts a significant influence on the 
endogenous variable. 
3 6is the author. is the most insignificant 
participant. The endogenous variable has a 
positive influence on the other variables. 
1 4 5is an internal determinant. 
6.4 ModelTesting 
In this section, the communality index, 
redundancy index and goodness of fit index 
are explained in thefollowing. 
Communality Index: The Communality is 
calculated to check the manifest variables in a 
block which areexplained by its latent 
construct. Communalities are the squared 
loadings of manifest variable in a construct. 
Thecommunalityofeachblockisrepresentedint
hefollowingTable6 

4 5 

∗→∗ 
1 6 

-0.751 0.0809 9.2750 0.000 Significant
***

 

∗→∗ 
2 6 

-0.613 0.0676 9.0642 0.000 Significant
***

 

∗→∗ 
3 6 

-0.780 -0.0727 10.7351 0.000 Significant
***

 

∗→∗ 
4 6 

-0.549 0.0612 8.9726 0.000 Significant
***

 

∗→∗ 
5 6 

0.773 0.0786 9.8364 0.000 Significant
***
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Table6 

Construct Type BlockCommunality MeanRedundancy 

∗ 

1 

Exogenous 0.7001 0.0000 

∗ 

2 

Exogenous 0.6004 0.0000 

∗ 

3 

Exogenous 0.6150 0.0000 

∗ 

4 

Exogenous 0.6023 0.0000 

∗ 

5 

Endogenous 0.0000 0.7360 

∗ 

6 

Endogenous 0.0000 0.8925 

 
EachconstructscommunalityisobtainedandgiveninTable6.Thecommunalitiesof,∗,∗,∗,∗are0.7001, 
1 2 3 4 
0.6004, 0.6150 and 0.6023 respectively. The 
block communalities are attained more than 
the minimum thresholdvalue0.5. 
RedundancyIndex:The tally sheet The 
independent latent variables connected with 
the endogenous latent variables predict a 
percentage of the variance of indicators in an 
endogenous block using redundancy. Because 
of the great degree of repetition, the external 
latent constructions can accurately predict the 
endogenous latent construct. Based on data 
in Table 6, we can deduce that the redundant 
value is 0.7360. Using exogenous latent 
constructs, it explains the degree of variability 
in the endogenous latent construct (). 
Variability in is responsible for 73.60% of the 
variance in the data. There is more redundant 
information in than there is in . 
5 6 5 
GoodnessoffitIndex:Measurement and 
structural models both benefit from the 
goodness of fit index, which measures how 
well they fit the data. The geometric mean of 
the average communality and the average R2 
value is used to determine the goodness-of-fit 
index. The specified model has a goodness of 
fit index of 0.837. The model's accuracy at 
predicting the future is 83.7 percent in this 
case. There is no criterion or threshold value 
for comparing the quality of fit in the 
goodness of fit. According to this one-rule, an 
estimated model may only be considered 
good if its goodness of fit increases.  

Because of this, it can be stated that the 
partial least square nonlinear structural 
equation model is a method for estimating 
parameters and discovering the link between 
variables without making assumptions. A 
partial least square nonlinear structural 
equation model is found to be well-suited to 
explain the link between exogenous and 
endogenous latent constructs, as stated in the 
previous sections on communality and 
redundancy. In the linear and nonlinear 
estimations, the interaction effect accounts 
for more than the other components. 
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