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Abstract  :  A  bidirectional  LMS  algorithm  is considered  for  estimation  of  fast  frequency- 

selective time-varying channels with a promise of near optimal tracking 

 performance and robustness  to  parameter   imperfections  under various 

 scenarios at a practical level  of complexity. The performance of the algorithm is 

verified by the theoretical steady 
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I. Introduction 

 

THE adaptive least    mean square  (LMS) 

algorithm is of interest with its simple first order 

update  equation  . Unfortunately, tracking 

performance of the LMS algorithm deteriorates 

dramatically in fast time-varying environments . 

A recent bidirectional estimation strategy, which 

is  pioneered  by  and  further elaborated  in  and, 

robustness  of  the  algorithm  to  the  imperfect 

initialization  and  noisy  Doppler  and  signal-to- 

noise ratio (SNR) values is also verified with the 

associated mean square identification error 

(MSIE) statistics.  Finally, the promised 

performance  is  also  investigated  through  BER 

results in a coded scenario as  a more realistic 

application
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II. SYSTEM MODEL AND THE 

BIDIRECTIONAL LMS ALGORITHM 

 
 

We consider an   unknown time-varying 

frequency-selective communication channel 

represented by an Lc-tap fading vector  fk = [fk,0 

.  .  .  fk,Lc−1]T  with  uncorrelated  entries  and 

assume   the   following   discrete-time   complex 

baseband model  at an epoch k given as 

   =  ∑      ,      −   +    =       +    

offers  an  improved  tracking  performance  for 
fast-time varying channels, but this time, at the 

expense of a severe computational complexity. In 

this  paper,  we   consider  a  bidirectional  LMS 

algorithm over  fast  frequency-selective  time- 

varying  channels  with  an   increased  but  still 

practical   level   of   complexity.   The   tracking 

performance  of  the  proposed  algorithm  at  the 

steady-state is very close to that of the optimal 

minimum  mean-square  error  (MMSE)  filter  in 

some  settings  of  practical  interest  in  terms  of 

communication systems and is remarkably better 

than  that  of  the  conventional  LMS.  Although 

there are various work present in the literature on 

other forms of bidirectional estimation   none of 

them provide a theoretical analysis on the mean- 

square error (MSE) behavior. 

Therefore, as a major contribution of this paper, 

we   analyze  the  tracking  performance  of  the 

bidirectional LMS algorithm by deriving a novel 

step-size  dependent  steady-state  MSE and 

optimal  step-size expressions  over fast 

frequency-selective time-varying channels. This 

derivation is applicable to many communication 

scenarios in the sense that it does not depend on 

the  channel  characteristics  and  the  modulation 

scheme in use. The numerical evaluations show a 

very good match between the theoretical and the 

experimental  results  most  of   the   time.   The 

(1) 
 
 

where yk is the observation symbol, ak = [ak . . . 

ak−Lc+1]T is the vector of data symbols chosen 

from a finite  alphabet A in an independent and 

identical fashion, and nk is a circularly 

symmetric  complex  white Gaussian noise with 

zero-mean  and  variance  N0.  The  bidirectional 

LMS algorithm is  basically an extension of the 

conventional  unidirectional  LMS  that  operates 

both in the forward and the backward directions 

along an observation block. Defining ˆff k and ˆfb 

k to be the channel estimates in the forward and 

the backward directions, respectively, the 

algorithm is given as 
 

 
 

fk+1  = fk + 2 µ ek ak(a) 
 

f k- 1 = fk + 2 µ ek ak(b) (2) 
 

 
 

where µ is the step size  e f k = yk-(f)T ak  and 

eb k = yk − (ˆf b k )T ak are the forward and the 

backward   errors,   respectively.  The  arithmetic 

average  operation  is  preferred  among  various 

choices  as  a  simple  yet   efficient  combining 

strategy to obtain the final  coefficient  estimates 

ˆfk as follows 
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(3) The self-noise could then be evaluated as 

 

The bidirectional LMS algorithm requires (3Lc + 

2) complex additions  and  (5Lc  +4)  complex 

multiplications in estimating each fading vector 

      =    {||      ||2 
#

 

$%|   |% & 
+     + #

 

while these numbers are Lc+1 and 2 (Lc+1) for 

the  conventional LMS algorithm and Lc (K−1) 

and  LcK for a K-tap MMSE  filter [1], 

respectively.  Note  that  the  MMSE  filter  also 

requires a matrix inversion of complexity O(K3) 

and a matrix  multiplication of complexity 

O(LcK2) to compute  optimal filter coefficients. 

As   a   result,   the   overall   complexity  of   the 

bidirectional LMS is approximately twice that of 

the  conventional  LMS  and  significantly  lower 

compared to the optimal MMSE estimation. 
 

 
 

III. TRACKING PERFORMANCE OF THE 

BIDIRECTIONAL LMS ALGORITHM 

 
A )  Steady-State  MSE  and  Optimal  Step-Size 

Expressions 

In  this  section,  we  will  evaluate  the  tracking 

performance of the bidirectional LMS algorithm 

over a  frequency-selective time-varying channel 

by   deriving   a   steady-state   MSE   expression 

together with the optimal step-size. Since we are 

dealing  with  tracking   performance,  ak’s  are 

assumed to be perfectly known along a block of 

length   L.   The   associated   error   performance 

surface, or equivalently the MSE expression,  is 

given as 

 
j (mse ) = Ek{|ek| 2 } = E{|yk – fk  ak|2 } (4) 

 
As a result, MSIE of the bidirectional LMS in 

time-varying  environments  is  the  sum  of  two 

terms which are called the self-noise (Jself) and 

the lag (Jlag) [9], and will be derived separately 

in this section. It is also discussed in [9] that Jself 

arises from the noisy gradient  estimation of the 

error performance surface, and Jlag is due to the 

time variation. Because the source of the  self- 

noise is the noisy gradient  estimation, we ignore 

any time variation while deriving Jself , as in [9]. 

To this end, we first model the gradient estimates 

in the forward and the backward direction Since 

we ignore any  time-variation  in  this  particular 

case, the self-noise given in (6) becomes Jself = 

E{_vk_2} (see [10] for details)  where vk = fk 

−ˆfk is the overall tap-weight tracking error and 

is given as 

   =      −      =          −      + 
               

=       + 
  

'      
  
 } (6) 

 

 

where the last term could be further elaborated 
by iterative employment of (7)-(8) as follows 
 

 

 {             ) } =
 

 1 − 2+                {       ℎ      ) }  (7-8)

 

 
since _f k and _bl are assumed to be zero-mean 

random variables which are mutually 

independent of each other and of vf k and vb k 

[1]. As a result, the last term in (10) could safely 

be ignored since (1 − 2 µEs)L _ 1 in (11) due to 

the  fact  that  |1  −  2  µEs|  <  1  is  the  mean- 

convergence condition of the LMS algorithm. In 

[11], [12], an iterative expression is given for the 

meansquare  energy  of  the  tap-weight  tracking 

error for the conventional LMS which could be 

expressed at the steady-state As 

 
E{|vkf|2 } = E{vkb|2} = µ LcEs / Es - µ [(lc -1) 

Es 2 + E 4 ] jmin (9) 
 

 
 

which is observed to depend on the step-size µ, 

the number of channel taps Lc, average energies 

Es and E4 of the input symbols and the minimum 

achievable MSE which is N0. Since contribution 

of the noisy gradient  estimation into the overall 

MSE is considered by the self-noise part, perfect 

gradient estimation is assumed in the same way 

as in [9] while analyzing the lag component, and 

the  focus  is  on  the  time  variation  only.  The 

resulting adaptive processes could be  expressed 

as 

 
f k+1  = fka - µ ∆f = (1-2µ Es) fk + 2µ s f k (10) 

f k -1 = fkb - µ ∆f  = (1-2µ Es) fk - 2µ Esfk 

 
(11) 
 
 
 
 

In order to cope with time variation, z-transforms 

of (10)-(11) are computed and combined 

 5 

 

according to (4) as follows 

f(z) = fa(z) + fb(z) /2  (12) 
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f(z) – f(z) = H(z)f(z) (13) 
 
 
 
 

where  H(z)  is  the  transfer  function  for  the 

bidirectional LMS algorithm, which is 

independent of the channel characteristics to be 

estimated, and is given as 

Numerical Results 

Without  any  loss  of  generality,  a  frequency- 

selective   channel  with  Lc  =  {2,  4}  taps  is 

assumed with wide-sense stationary uncorrelated 

scattering (WSSUS)  Rayleigh fading generated 

according to the well-known Jakes’ model [13]. 

The channel has a fast time variation  with the 

maximum normalized Doppler frequency of fdTs 

= {0.01, 0.02}. In each trial, a set of L = 100 

information  symbols  are  chosen  independently 
/ 

- .  = 1 + 2/
 

+ 1 −
 

1 

/  1 
0 2/   1

 

1 
− /. − 1 1 − 1

 

from the the BPSK alphabet A = {−1, +1} so that 

Es = E4 = 1, and the observations are produced 

according to the system model given in (1). We 
− 
 . 

− 1  14 

 

Since the gradient  is  assumed  to  be estimated 

 
perfectly   for this   particular   case,   the   lag 

component   given   in   (6)   becomes Jlag   = 

E{_ˆfk−fk_2} [10]. Therefore, Jlag is the mean- 

square 

energy  of  the  estimation  error,  and  could  be 

evaluated in the frequency domain using (17) and 

(18) as follows [8] 

   3

 
45 

accordingly assume constant average SNR and 

maximum normalized Doppler frequency over a 

data block due to the transmission of short data 

blocks. 

 
In Fig. 1, we plot theoretical and experimental 

normalized MSIE, i.e., JMSIE/Lc, results for the 

bidirectional LMS (BiLMS) algorithm by using 

(5) and (20) for varying µ and at γ _ Es/N0 = 10 

dB for fdTs = 0.01 and γ = 4 dB for fdTs = 0.02 

where γ denotes the average received SNR. The 

experimental normalized MSIE results associated 

with the conventional unidirectional LMS 

(UniLMS) and  MMSE filter are also provided. 

We  observe  a  very  good  match  between  the 

theoretical and the  experimental results for the 

bidirectional  LMS  for  any  choice  of  µ.  The 

tracking ability of the bidirectional  LMS is also 

verified by achieving a minimum MSIE which is 
= : 26 7   : 

-|  8|2    (8)98 
(15)

 
close to that of the MMSE filter which is far 

 

 
 
 

where Sf (w) is the power spectrum of the fading 

process under consideration, and H(ejw) = H(z)| 

z=ejw from (18) [8]. Using (5), (13) and (19), the 

final form of MSE expression Becomes 
 
 
 

 ;   = (1 +  +45    + 
 (<= >?@A   B<= C<#)DEFG 

 
45      (16)

 
In  order  to  derive  the  optimal  step-size,  µopt, 
theoretically, we first take the derivative of (20) 

with respect to β as follows 

 

 

Fig 1 Theoretical and experimental normalized MSIE 

over a frequencyselective Rayleigh fading channel of 

length L = 100 with Lc = 2 tap at γ = 10 dB for fdTs = 0.01 

and γ = 4 dB for fdTs = 0.02 

 

 
 

HDE=I  
= −    45  

( − ( 1 − /)? 5 − 1     2 + 
HJ  I=  

 

 4 B)2 (17)
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Fig 2 Theoretical and experimental normalized MSIE 

associated with the optimal step-size over a frequency- 

selective Rayleigh fading channel of length 

L = 100 with Lc = {2, 4} tap and fdTs = 0.01. 
 

 
 
 

beyond  that  of  the  conventional  LMS.  We 

should also report that no significant 

performance improvement is observed in MMSE 

filter when K >31 for fdTs = 0.01 and K >15 for 

fdTs  =  0.02.  In  Fig.  2,  the  MSIE  results  are 

presented for varying γ with the optimal step-size 

values (µopt) over a frequency-selective channel 

with Lc = {2, 4} taps. The experimental and the 

theoretical  MSIE  results  for  the   bidirectional 

LMS algorithm are again observed to  exhibit a 

very  good  match  for  various  γ  choices.  The 

theoretical  µopt’s computed  according to  (21)- 

(22 with 0.01 increments which are observed to 

be  very  close  to  each  other  for  various  fdTs 

choices.   Because   the   large   step-size   values 

contribute  to  the  self-noise  part  and  the  small 

ones amplify the lag part of the associated MSIE, 

the optimal step-size appears to be a compromise 

to  obtain  the  best  performance  in  accordance 

with the results of Fig. 1 and should be greater to 

track much faster channels. 
 

 
 

IV. ROBUSTNESS OF THE BIDIRECTIONAL 

LMS 

ALGORITHM 

 
We now consider  the robustness  of the 

bidirectional LMS algorithm to imperfect 

initialization  and  knowledge  of  the  maximum 

Doppler   frequency  and  SNR  through  MSIE 

results. It is  assumed that the algorithm is run 

with  µopt computed  through  (21)  and  (22) by 

using  the   estimated  parameters  under 

consideration. In  order to estimate the unknown 

parameters of interest in this section, a sequence 

of  LT  pilot  symbols  chosen   from  A  in  an 

independent  and  identical  fashion  is  employed 

prior to each of the transmitted block of length L. 

 

 

A. Effects of Imperfect Doppler and SNR 

Information 

 
In  order  to  estimate  the  unknown  maximum 

Doppler   frequency  fd,  we  modify  the  least- 

squares (LS)   approach givenin [14] which 

chooses  an estimate ˆ   fd minimizing the 

following cost function 
 

 
 

 
 
assuming  that  fd  does  not  change  during  Q 

blocks.  Note  that  the  cost  function  in  (23)  is 

different  from  the  one  given  [14]  in  that  the 

minimization is also over the independent fading 

taps. In (23), r(.; fd) is the true  autocorrelation 

value and ˆKq,m(l)is given as 

 

 
 
where ˆ fq k,m is LS estimate of fk,m derived 

from the  pilot symbols in the q-th block which 

does not need fd and the SNR. We prefer the ML 

approach  [15] to  estimate  the unknown snr as 

follows SNR as follows 

 
Γ = argmax in (py; γ/a ) = armax {- in |Ry | - Y h 

Ry-1 Y } 
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Fig 3  BER for BiLMS, UniLMS and MMSE with M = 

{11, 21} over a 2-tap frequency-selective Rayleigh fading 

channel with fdTs = 0.01. The number of channel 

estimation iterations for BiLMS and UniLMS is 3 for 

M = 11 and 5 for M = 21. 

 
Effect of Imperfect Initialization 

In  practical  systems  of  interest,  there  is  no 

perfect  information on the fading vector at the 

beginning and end of the transmitted block. We 

therefore consider to  initialize the bidirectional 

LMS algorithm either with the zero vector or the 

LS estimate employing only Lc pilot  symbols, 

i.e.,  LT  =  Lc,  in  order  to   investigate  the 

associated  performance  under  these   stringent 

conditions. The associated Monte Carlo results 

for  various  data  block  lengths  over  a  2-tap 

Rayleigh fading channel with the Jakes’ 

spectrum and fdTs = 0.01 are presented in Fig. 4. 

We  observe that zero initialization is sufficient 

for relatively long but still practical data blocks 

and that  the  LS  initialization  with  LT  =  2 

achieves a satisfactory performance even for the 

short blocks especially around  the optimal step- 

size, i.e., minimum point of the MSIE curves 

 
V. AN APPLICATION: ITERATIVE 

CHANNEL ESTIMATION 

WITH THE BIDIRECTIONAL LMS 

 
As a more realistic application, we consider a 

coded  system in which the unknown channel is 

estimated   iteratively   by   employing   the   soft 

decisions on the coded symbols, as suggested in 

[16].  We  propose  to  employ  the  bidirectional 

LMS  algorithm  in  order  to   achieve  a  BER 

performance similar to that with the MMSE filter 

with significantly less computational complexity. 

At the transmitter, a set of Ld binary symbols are 

first  encoded  by  a  channel  code,  interleaved, 

modulated  and  then  multiplexed  with  a  set  of 

known pilot symbols which are inserted into the 

stream with a period of M symbols [17]. At the 

receiver,  an  initial   estimate  of  the  unknown 

channel is obtained by an  optimal MMSE filter 

employing the pilots only. This  estimate is then 

refined through iterations by employing 

the soft estimates of the coded symbols provided 

by the soft decoder, as well as the pilot symbols, 

in all of the estimation algorithms under 

consideration (see [16] for  details). We depict 

the experimental BER results in Fig. 5 assuming 

Ld = 98, M = {11, 21}, BPSK modulation and a 

convolutional code with the generator (1, 5/7)8 

over   an   equal-power   2-tap   Rayleigh   fading 

channel  with  the  Jakes’  spectrum  and  fdTs  = 

0.01. We choose the step-size values optimally 

on  a  trial  and  error  basis,  and  the  number  of 

channel estimation iterations to be 3 for M = 11 

and  5  for  M  =   21  both  of  which  provide 

satisfactory  convergence.  We  observe  that  the 

BER results are significantly  improved through 

iterative estimation of the unknown  channel for 

which the performance of the perfectly initialized 

bidirectional LMS algorithm is very close to that 

of the 21-tap MMSE filter and is much better 

than  that of the unidirectional LMS algorithm. 

We also observe that the imperfect initialization 

of  the   bidirectional  LMS  algorithm  with  the 

estimates from  the  previous channel estimation 

iteration  does not  cause any significant 

performance degradation as compared to perfect 

initialization, similar to the results of Section IV- 

B.  As  a  final  remark,  when  we  decrease  the 

number of pilot symbols by choosing  M  = 21 

instead of M  = 11, although  the BER 

performance of the MMSE filter employing the 

pilots  only deteriorates by approximately 2 dB, 

the bidirectional  LMS algorithm with imperfect 

initialization  achieves   almost  the  same  BER 

performance at the expense of increased but still 

practical number of channel estimation iterations. 
 

 
 

SUMMARY 

 
A bidirectional LMS algorithm is considered and 

analyzed   over   fast   frequency-selective   time- 

varying channels.  The tracking performance of 

the bidirectional LMS is shown to be very close 

to  that  of  the  optimal  MMSE  filter  in  some 

settings  of  practical  interest,  and   remarkably 

better  than   that  of  the  conventional LMS 

algorithm.   A   step-size   dependent   steadystate 

MSE together with  the    optimal step-size 

expressions  are  derived  in  order  to  provide  a 

theoretical analysis,  and   the  corresponding 

theoretical  results  show  a  good  match  to  the 

experimental ones  most of the time.   The 

algorithm is also shown to be robust to imperfect 

initialization  together  with  noisy  Doppler  and 

SNR   information,  and  achieves  BER  results 

very close to that of the MMSE filter in various 

scenarios. 
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