Research Paper

FIXED POINT THEOREMS IN FUZZY 2-METRIC SPACE WITH IMPLICIT MAP

R Krishnakumar* and P Parakath Nisha Bagam

*Corresponding Author: R Krishnakumar srksacet@yahoo.co.in

In this paper, we prove some common fixed point theorem for four and six mappings on fuzzy 2-metric spaces by using implicit relations. Our result is an extension of existing results in fuzzy 2-metric spaces.

Keywords: Fuzzy 2-metric spaces, Fixed point, Contractive mapping, Implicit relations

INTRODUCTION

PRELIMINARIES

Definition 2.1: A triangular norm (t norm)* is a binary operation on the unit interval [0; 1] such that for all a; b; c; d ∈ [0; 1] the following conditions are satisfied:

1. a * 1 = a
2. a * b = b * a
3. a * b ≤ c * d; whenever a ≤ c and b ≤ d
4. a * (b * c) = (a * b) * c

Definition 2.2: The 3-tuple (X;M; *) is called a fuzzy 2-metric space if X is an arbitrary set, * is a continuous t norm and M is a fuzzy set in X^3 × X.
[0; \infty) satisfying the following conditions: for all \(x; y; z; u \in X \) and \(t_1; t_2; t_3 > 0 \)
1. \(M(x; y; z; 0) = 0 \)
2. \(M(x; y; z; t) = 1; t > 0 \) and when at least two of the three points are equal.
3. \(M(x; y; z; t) = M(y; z; x; t) \) (Symmetry about three variables)
4. \(M(x, y, z, t_1 + t_2 + t_3) \leq M(x, y, z, t_1) \cdot M(x, y, z, t_2) \cdot M(x, y, z, t_3) \) (This corresponds to tetrahedron inequality in 2-metric space) The function value \(M(x; y; z; t) \) may be interpreted as the probability that the area of triangle is less than \(t \):
5. \(M(x; y; z; \cdot) : [0; \infty) \rightarrow [0; 1] \) is left continuous.

Example 2.3: Let \((X; d)\) be a 2-metric space and denote \(a \star b = ab \) for all \(a; b \in [0; 1] \). For each \(h; m; n \in \mathbb{R}^+ \) and \(\forall t > 0 \); define \(M(x; y; z; t) = \frac{ht^m}{ht^m + md(x, y, z)} \). Then \((X; M; \star)\) is a fuzzy 2-metric space.

Example 2.4: Let \(X \) be the set \(\{1, 2, 3, 4\} \) with 2-metric \(d \) is defined by
\[
d(x, y, z)
= \begin{cases}
0, & \text{if } x = y, y = z, z = x \text{ and } \{x, y, z\} = \{1, 2, 3\} \\
\frac{1}{2}, & \text{otherwise}
\end{cases}
\]
for each \(t \in [0; \infty) \), define \(a \star b \star c = abc \) and
\[
M(x, y, z, t)
= \begin{cases}
0, & \text{if } t = 0 \\
\frac{t}{t + d(x, y, z)}, & \text{if } t > 0 \text{ where } x, y, z \in X
\end{cases}
\]
Then \((X; M; \star)\) is a fuzzy 2-metric space.

Definition 2.5: A sequence \(\{x_n\} \) in a fuzzy 2-metric space \((X; M; \star)\) is said to converge to \(x \in X \) if and only if \(\lim_{n \to \infty} M(x_n, x, a, t) = 1 \); for all \(a \in X \) and \(t > 0 \).

Definition 2.6: Let \((X; M; \star)\) be a fuzzy 2-metric space. A sequence \(\{x_n\} \) is called cauchy sequence if and only if \(\lim_{n \to \infty} M(x_{n+p}, x_n, a, t) = 1 \); for all \(a \in X \) and \(p > 0; t > 0 \).

Definition 2.7: A fuzzy 2-metric space \((X; M; \star)\) is said to be complete if and only if every cauchy sequence in \(X \) is convergent in \(X \).

Definition 2.8: Self mapping \(S \) and \(T \) of a fuzzy 2-metric space \((X; M; \star)\) are said to weakly commuting if \(M(STx; TSx; z; t) \geq M(Sx; Tx; t) \); for each \(x \in X \) and \(t > 0 \).

Definition 2.9: Self mapping \(S \) and \(T \) of a fuzzy 2-metric space \((X; M; \star)\) are said to be compatible if \(\lim_{n \to \infty} M(STx_n; TSx_n; z; t) = 1 \) \(\forall t > 0 \) whenever \(\{x_n\} \) is a sequence in \(X \) such that \(TX_n; Sx_n \to x \) for some \(x \in X \) as \(n \to \infty \).

FIXED POINT THEOREMS IN FUZZY 2-METRIC SPACE

Definition 2.10: Suppose \(S \) and \(T \) be self mappings of a fuzzy 2-metric space \((X; M; \star)\). A point \(x \) in \(X \) is called a coincidence point of \(S \) and \(T \) if and only if \(Sx = Tx \), then \(w = Sx = Tx \) is called a point of coincidence of \(S \) and \(T \).

Definition 2.11: Let \(X \) be a set, \(f; g \) are self maps of \(X \). A point \(x \) in \(X \) is called coincidence point of \(f \) and \(g \) if and only if \(fx = gx \). We shall call \(w = fx = gx \) a point of coincidence of \(f \) and \(g \).

Definition 2.12: Self maps \(S \) and \(T \) of a fuzzy 2-metric space \((X; M; \star)\) are said to be weakly compatible if they commute at their coincidence points that is \(Sx = Tx \) for some \(x \in X \) then \(STx = TSx \).

Definition 2.13: Self maps \(S \) and \(T \) of a fuzzy 2-
metric space \((X; M; \ast)\) are said to be occasionally weakly compatible (owc) if and only if there is a point \(x\) in \(X\) which is coincidence point of \(S\) and \(T\) at which they commute.

Lemma 2.14: Let \(X\) be a set, \(f; g\) owc self maps of \(X\). If \(f\) and \(g\) have a unique point of coincidence, \(w = fx = gx\); then \(w\) is the unique common fixed point of \(f\) and \(g\).

IMPLICIT RELATION

Let \(\Phi\) be the set of all real continuous function \(\phi : (R^+)^6 \rightarrow R^+\) satisfying the following condition \(\phi(u; u; v; v; u; u) \geq 0\) imply \(u \geq v\) for all \(u; v \in [0; 1]\):

Theorem 3.1: Let \((X; M; \ast)\) be a fuzzy 2-metric space with * continuous \(t\)-norm. Let \(A; B\) be two self mappings of \(X\) satisfying

1. The pair \((A; S)\) be owc.
2. For some \(\phi \in \Phi\) and for all \(x; y; z \in X\) and every \(t > 0\)
 \[
 \phi(M(Ax; Ay; z; t); M(Ax; Ay; z; t); M(Ax; Ax; z; t); M(Ax; Ay; z; t); M(Ax; Ay; z; t)) \geq 0.
 \]
then there exist a unique point \(w \in X\) such that \(Aw = Sw = w\). Moreover \(w\) is a unique common fixed point of \(A\) and \(S\).

Proof: Let the pair \((A; S)\) be owc. So there are points \(x; y; z \in X\) such that \(Ax = Ax\). We claim that \(Ax = Ay\). If not, by inequality (2),

\[
\phi(M(Ax; Ay; z; t); M(Ax; Ax; z; t); M(Ax; Ay; z; t); M(Ax; Ay; z; t)) \geq 0.
\]

In view of \(\phi\) we get \(Ax = Ay\). That is \(Ax = Sx = Ay = Sy\).

Suppose that there is another point \(w \in X\) such that \(Aw = Sw\) then by (1) we have \(Aw = Sw = By = Ty\). So \(Ax = Aw\) and \(w = Ax = Sx\) is the unique point of coincidence of \(A\) and \(S\): By lemma (2.14), \(w\) is a common fixed point of \(A\) and \(S\).

To prove the uniqueness: Let \(w_1; w_2\) be two common fixed points of \(A\) and \(S\). Assume that \(w_1 \neq w_2\).

Theorem 3.2: Let \((X; M; \ast)\) be a fuzzy 2-metric space with * continuous \(t\)-norm. Let \(A; B; S; T\) be four self mappings of \(X\) satisfying

1. The pairs \((A; S)\) and \((B; T)\) be owc.
2. For some \(\phi \in \Phi\) and for all \(x; y; z \in X\) and every \(t > 0\);
 \[
 \phi(M(Ax; By; z; t), M(Ax; By; z; t), M(Sx; Ty; z; t); M(Ax; By; z; t), M(Sx; By; z; t)) \geq 0.
 \]
then there exist a unique point \(w \in X\) such that \(Aw = Sw = w\) and a unique point \(z \in X\) such that \(Bz = Tz = z\). Moreover \(z = w\), so that there is a unique common fixed point of \(A; B; S\) and \(T\).

Proof: Let the pairs \((A; S)\) and \((B; T)\) be owc. So there are points \(x; y; z \in X\) such that \(Ax = Ax\) and \(By = Ty\). We claim that \(Ax = By\). If not, by inequality (2),

\[
\phi(M(Ax; By; z; t); M(Sx; Ty; z; t); M(Sx; Ax; z; t)); M(Sx; By; z; t)) \geq 0.
\]
\[M(Ty; By; z; t); M(Ax; Ty; z; t); M(Sx; By; z; t) \geq 0 \]
\[\phi \{ M(Ax; By; z; t); M(Ax; By; z; t); M(Ax; Ax; z; t); M(By; By; z; t); M(Ax; By; z; t); M(Ax; By; z; t) \} \geq 0 \]
\[\phi \{ M(Ax; By; z; t); M(Ax; By; z; t); 1; 1; M(Ax; By; z; t); M(Ax; By; z; t) \} \geq 0 \]

In view of \(\Phi \) we get \(Ax = By \). That is \(Ax = Sx = By = Ty \).

Suppose that there is another point \(w \in X \) such that \(Aw = Sw \) then by (i) we have \(Ax = Sw = By = Ty \). So \(Ax = Aw \) and \(w = Ax = Sx \) is the unique point of coincidence of \(A \) and \(S \). By lemma (2.14) \(w \) is a common fixed point of \(A \) and \(S \).

And suppose that there is another point \(u \in X \) such that \(Bu = Tu \) then by (i) we have \(Ax = Sx = Bu = Tu \). So \(By = Bu \) and \(u = By = Ty \) is the unique point of coincidence of \(B \) and \(T \). By lemma (2.14) \(u \) is a common fixed point of \(B \) and \(T \).

Assume that \(w \neq u \) we have
\[\phi \{ M(Aw; Bu; z; t); M(Sw; Tu; z; t); M(Sw; Aw; z; t) \}; \]
\[M(Tu; Bu; z; t); M(Aw; Tu; z; t); M(Sw; Bu; z; t) \geq 0 \]
\[\phi \{ M(w; u; z; t); M(w; u; z; t); M(w; w; z; t); M(u; u; z; t); M(w; u; z; t) \} \geq 0 \]
\[\phi \{ M(w; u; z; t); M(w; u; z; t); 1; 1; M(w; u; z; t); M(w; u; z; t) \} \geq 0 \]

In view of \(\Phi \) we get \(w = u \). By lemma (2.14) \(z \) is a common fixed point of \(A; B; S \) and \(T \).

To prove the uniqueness:

Let \(w_1; w_2 \) be two common fixed points of \(A; B; S \) and \(T \).

Assume that \(w_1 \neq w_2 \).
\[\phi \{ M(Aw_1; Bw_2; z; t); M(Sw_1; Tw_2; z; t); M(Sw_1; Aw_1; z; t); M(Tw_2; Bw_2; z; t); M(Aw_1; Tw_2; z; t); M(Sw_1; Bw_2; z; t) \} \geq 0 \]
\[\phi \{ M(w_1; w_2; z; t); M(w_1; w_2; z; t); M(w_1; w_2; z; t); M(w_1; w_2; z; t) \} \geq 0 \]
\[\phi \{ M(w_1; w_2; z; t); M(Aw_1; By; z; t); M(Ax; By; z; t); M(Ax; Ax; z; t); M(By; By; z; t); M(Ax; By; z; t) \} \geq 0 \]

Therefore we get \(w_1 = w_2 \).

Theorem 3.3: Let \((X; M; *) \) be a fuzzy 2-metric space with \(\ast \) continuous tnorm. Let \(A; B; f; S; T; g \) be six self mappings of \(X \) satisfying
1. The pair \((A; S); (B; T) \) and \((f; g) \) be owc.
2. For some \(\phi \in \Phi \) and for all \(x; y; z \in X \) and every \(t > 0 \);
\[\phi \{ M(Ax; By; fz; t); M(Sx; Ty; gz; t); M(Ax; Sx; fz; t); M(Ty; By; gz; t); M(Ax; Ty; fz; t); M(Sx; By; gz; t) \} \geq 0 \]
then there exist a unique point \(w \in X \) such that \(Aw = Sw = w \) and a unique point \(z \in X \) such that \(Bz = Tz = z \) and a unique point \(v \in X \) such that \(fv = gv = v \). Moreover \(w = z = v \); so that there is a unique common fixed point of \(A; B; f; S; T; g \).

Proof: Let the pairs \(\{A, S\}; \{B, T\} \) and \(\{f, g\} \) be owc.

Then there exist a unique point \(w \in X \) such that \(Aw = Sw = w \) and a unique point \(z \in X \) such that \(Bz = Tz = z \) and a unique point \(v \in X \) such that \(fv = gv = v \). Moreover \(w = z = v \); so that there is a unique common fixed point of \(A; B; f; S; T; g \).

We claim that \(Ax = By = fz = gz \).

So there are points \(x; y; z \in X \) such that \(Ax = Sx \) and \(By = Ty \) and \(fz = gz \).

We claim that \(Ax = By = fz \): If not, by inequality (2),
\[\phi \{ M(Ax; By; fz; t); M(Sx; Ty; gz; t); M(Ax; Sx; fz; t); M(Ty; By; gz; t); M(Ax; Ty; fz; t); M(Sx; By; gz; t) \} \geq 0 \]
\[\phi \{ M(Ax; By; fz; t); M(Ax; By; fz; t); M(Ax; Ax; fz; t); M(By; By; fz; t); M(Ax; By; fz; t); M(Ax; Ax; fz; t) \} \geq 0 \]
\[M(By; By; fz; t); M(Ax; By; fz; t); M(Ax; By; fz; t) \geq 0. \]

\[\phi \{ M(Ax; By; fz; t); M(Ax; By; fz; t); 1; 1; M(Ax; By; fz; t); M(Ax; By; fz; t) \} \geq 0. \]

In view of \(\Phi \) we get \(Ax = By = fz \). That is \(Ax = Sx = By = Ty = fz = gz \). Suppose that there is another point \(w \in X \) such that \(Aw = Sw \) then by (1) we have \(Aw = Sw = By = Ty = fz = gz \). So \(Ax = Aw \) and \(w = Ax = Sx \) is the unique point of coincidence of \(A \) and \(S \). By lemma(2.14) \(w \) is the only common fixed point of \(A \) and \(S \).

Suppose that there is another point \(u \in X \) such that \(Bu = Tu \) then by (i) we have \(Ax = Sx = Bu = Tu = fz = gz \). So \(By = Bu \) and \(u = By = Ty \) is the unique point of coincidence of \(B \) and \(T \). By lemma(2.14) \(u \) is the only common fixed point of \(B \) and \(T \). And suppose that there is another point \(v \in X \) such that \(fv = gv \) then by (i) we have \(Ax = Sx = By = Ty = fv = gv \). So \(fz = fv \) and \(v = fz = gz \) is the unique point of coincidence of \(f \) and \(g \). By lemma(2.14) \(v \) is the only common fixed point of \(f \) and \(g \). Assume that \(w \neq u \neq v \) we have

\[\phi \{ M(Aw; Bu; fv; t); M(Sw; Tu; gv; t); M(Sw; Aw; fv; t); M(Tu; Bu; gv; t); M(Aw; Tu; fv; t); M(Sw; Bu; gv; t) \} \geq 0 \]

\[\phi \{ M(w; w; v; t); M(w; v; w; v; t); M(w; w; w; v; t); M(w; u; v; t); M(w; v; u; v; t); M(w; u; v; t); M(w; v; u; t); M(w; v; t) \} \geq 0 \]

In view of \(\Phi \) we get \(w = u = v \). By lemma(2.14) \(w \) is a common fixed point of \(A; B; f; S; T \) and \(g \).

To prove the uniqueness: Let \(w_1, w_2 \) be two common fixed points of \(A; B; f; S; T \) and \(g \). Assume that \(w_1 \neq w_2 \):

\[\phi \{ M(Aw_1; Bw_2; v; t); M(Sw_1; Tw_2; v; t); M(Sw_1; Aw_1; v; t); M(Tw_2; Bw_2; v; t); M(Aw_1; Tw_2; v; t); M(Sw_1; Bw_2; v; t) \} \geq 0 \]

\[\phi \{ M(w_1; w_2; v; t); M(w_1; w_2; v; t); 1; 1; M(w_1; w_2; v; t); M(w_1; w_2; v; t) \} \geq 0. \]

Therefore we get \(w_1 = w_2 \).

REFERENCES

